Deep Learning with Neural Networks and TensorFlow Introduction
Welcome to a new section in our Machine Learning Tutorial series: Deep Learning with Neural Networks and TensorFlow. The artificial neural network is a biologically-inspired methodology to conduct machine learning, intended to mimic your brain (a biological neural network).
The Artificial Neural Network, which I will now just refer to as a neural network, is not a new concept. The idea has been around since the 1940's, and has had a few ups and downs, most notably when compared against the Support Vector Machine (SVM). For example, the Neural Network was popularized up until the mid 90s when it was shown that the SVM, using a new-to-the-public (the technique itself was thought up long before it was actually put to use) technique, the "Kernel Trick," was capable of working with non-linearly separable datasets. With this, the Support Vector Machine catapulted to the front again, leaving neural nets behind and mostly nothing interesting until about 2011, where Deep Neural Networks began to take hold and outperform the Support Vector Machine, using new techniques, huge dataset availability, and much more powerful computers.
No comments